
LISP AND SYMBOLIC COMPUTATION: An International Journal, ?, ??–??, 1993
c© 1993 Kluwer Academic Publishers – Manufactured in The Netherlands

Balancing the EuLisp Metaobject Protocol∗

HARRY BRETTHAUER† (bretthauer@gmd.de)

JÜRGEN KOPP (kopp@gmd.de)

German National Research Center for Computer Science (GMD),
P.O. Box 1316, W-5205 Sankt Augustin 1, FRG

HARLEY DAVIS (davis@ilog.fr)

ILOG SA., 2 avenue Galliéni, 94253 Gentilly, France

KEITH PLAYFORD (kjp@maths.bath.ac.uk)

School of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Keywords: Object-oriented Programming, Language Design

Abstract. The challenge for the metaobject protocol designer is to balance the con-
flicting demands of efficiency, simplicity, and extensibility. It is impossible to know all
desired extensions in advance; some of them will require greater functionality, while oth-
ers require greater efficiency. In addition, the protocol itself must be sufficiently simple
that it can be fully documented and understood by those who need to use it.

This paper presents the framework of a metaobject protocol for EuLisp which provides
expressiveness by a multi-leveled protocol and achieves efficiency by static semantics for
predefined metaobjects and modularizing their operations. The EuLisp module system
supports global optimizations of metaobject applications. The metaobject system itself
is structured into modules, taking into account the consequences for the compiler. It
provides introspective operations as well as extension interfaces for various functionalities,
including new inheritance, allocation, and slot access semantics.

While the overall goals and functionality are close to those of Kiczales et al. [10], the
approach shows different emphases. As a result, time and space efficiency as well as
robustness have been improved.

∗This article is a revised and extended version of [5]
†The work of this paper was supported by the joint project APPLY, Ilog SA, the

University of Bath, the British Council/DAAD ARC program, and the EuLisp working
group.
The joint project APPLY is funded by the German Federal Ministry for Research and
Technology (BMFT). The partners in this project are the University of Kiel, the Fraun-
hofer Institute for Software Engineering and Systems Engineering (ISST), the German
National Research Center for Computer Science (GMD), and VW-Gedas.



2 BRETTHAUER, KOPP, DAVIS, PLAYFORD

1. Introduction

Recently, object-oriented languages with metaobject protocols have begun
to gain acceptance. A metaobject protocol extends the default semantics of
an object-oriented language with an open, documented protocol, allowing
the programmer to extend the base language in directions appropriate for
his application. Instead of bending the application to fit the language,
the programmer bends the language to fit the application. Ideally, many
such extensions can peacefully coexist within the same basic framework;
the language will treat the extensions homogeneously.

Additionally, metaobject protocols can provide generalized reflective fa-
cilities which allow the construction of debugging environments, inspectors,
and other tools which manage all objects via the same set of operations.

The state of the art in metaobject protocol design is best described in
“The Art of the Metaobject Protocol” by Gregor Kiczales, Jim des Rivieres,
and Daniel G. Bobrow [10]. Indeed, it is still an art rather than a science
to define elegant and useful object-oriented programs, and the problem is
compounded for a program as general as a language. Kiczales et al. present
an elaborate and tested metaobject protocol (MOP) for the Common Lisp
Object System (CLOS) [13]. Furthermore, they introduce the essential
problems to the reader and show various techniques which can be used to
solve them. Open questions and unsolved problems are presented to direct
future work.

One of the main problems is to find a better balance between expressive-
ness and ease of use on the one hand, and efficiency on the other.

Since 1989, the authors of this paper and other members of the EuLisp

committee have been engaged in the design and implementation of an object
system with a metaobject protocol for EuLisp [12] intended to correct some
of the perceived flaws in CLOS, to simplify it without losing any of its
power, and to provide the means more easily to implement it efficiently.
The current status of this work is reflected in the EuLisp definition. The
object system, TEΛOΣ, has been implemented with minor variations in
the public domain EuLisp implementation FEEL1, in the commercially
available dialect Le-Lisp version 16 [1], in Common Lisp 1 [2], and in
Scheme 1. TEΛOΣ is used as the base for a set of artificial intelligence
and graphic programming tools marketed by Ilog, SA. The expert system
workbench babylon [7] marketed by VW-Gedas uses MCS 2 [3] which is
closely related to TEΛOΣ. Most of these tools extend the kernel object
language provided by TEΛOΣ using the metaobject protocol.

1All three implementations are available via anonymous ftp from host ftp.bath.ac.uk
in the directory /pub/eulisp.

2MCS is available by anonymous ftp from /lang/lisp/mcs on ftp.gmd.de



BALANCING THE EuLisp METAOBJECT PROTOCOL 3

This work builds not only on CLOS, but also on a series of European
work on simple reflective object-oriented architectures in Lisp, including
work on ObjVLisp [8], the Micro Flavor System [6], Micro Common Fla-
vors [9], and the Meta Class System (MCS) [3].

1.1. Design Context

TEΛOΣ is an integrated part of the EuLisp language definition. In de-
scribing it, we cannot completely isolate the object system from the rest of
the language. There is a strong synergy between the rest of the language
and the object system, especially in the diverse ways that software engi-
neering goals are supported. For example, the division of work between
classes and modules is discussed in more detail below.

EuLisp’s primary goal is to serve as a general programming language
offering the traditional power of Lisp while taking the best concepts from
other languages and striving for the possibility of simple, efficient imple-
mentations. EuLisp features the following essential elements:

• a module system to support separate compilation and encapsulation.

• division into a core language and libraries to facilitate small applica-
tion development.

• parallel processes based on threads and semaphores for modern and
future computer architectures.

• a condition system for error handling.

• downward continuations for flexible control structures.

• macros for syntactic extension.

• an object system based on classes and generic functions with simple
default behavior and a metaobject protocol.

All elements of the language, except modules, bindings and the predefined
syntax (defining and special forms), are represented by first-class objects.
It is impossible to create or change a binding by computing its identifier
at runtime. Although functions can be generated dynamically at runtime,
all code patterns are known at compile-time. All of this helps generate
small, efficient applications, allowing EuLisp to compete favorably with
more traditional languages.



4 BRETTHAUER, KOPP, DAVIS, PLAYFORD

1.2. Design goals

Certain design goals apply almost to all languages and systems. These
include robustness, abstraction, extensibility, ease of use, and efficiency.

Kiczales et al. [10] claim to meet a number of these important design
criteria. Why is it hard or even impossible to meet all of them? The cri-
teria are, in practice, contradictory if they must all be met simultaneously.
However, we can use the fact that the priority of the goals change dur-
ing the course of the software lifecycle to emphasize the most important
goals at each lifecycle phase, thereby reducing design goal conflicts. For
example, abstraction and ease of use apply mainly to the development and
maintenance phases, while efficiency is essentially a runtime goal.

We propose the following classification of the above goals:

1.2.1. Robustness

The programmer must be able to depend on the documented function-
ality of defined modules; in other words, their semantic integrity must be
enforced. Adapting them should not mean changing them, since other mod-
ules used in the same system might stop working as a consequence. CLOS,
and Common Lisp generally, violate this constraint through various redef-
inition facilities. Instead, we should distinguish between development time
and execution time. During development, dynamic redefinition is useful.
At execution time, however, the semantics of language entities should be
fixed. Since the development environment is not generally considered to
be appropriate for specification, we have little to say about the extended
development capabilities offered by implementations. However, we would
like to assure the programmer that he can write programs whose semantics
is well-defined.

1.2.2. Abstraction

There should be different levels of granularity in the protocol, reflect-
ing the different levels at which users need to think about the system’s
functionality and extend it. Not all extensions are equal. Some extensions
require only small modifications in behavior from the default, while others
are quite large. The amount of work required to implement an extension
should reflect its scale. Although the user should not have to know imple-
mentation details, our experience shows that revealing appropriate details
at appropriate levels often makes use easier. A delicate question is the
lowest level of detail which can be revealed to allow portable and efficient
implementations.



BALANCING THE EuLisp METAOBJECT PROTOCOL 5

1.2.3. Extensibility

The scope of object models and implementations currently supported by
various languages and tools is quite large, ranging from classless, prototype-
based systems like Self to the complex, intricate models supported by many
expert system tools. If our goal is to provide a single medium in which all
of these models can harmoniously co-exist, special care must be taken in
the development of flexible, general protocols.

This goal also interacts with robustness. We consider extension rather
than modification to be the appropriate model for implementing new sys-
tem behavior, since it allows both the definition of new functionality and
constant semantics for existing functionality.

1.2.4. Ease of use

Using and extending the language must be natural and straightforward.
Ease of use should not, however, be confused with the laziness of program-
mers who write quick hacks with unpredictable consequences. The fact
that defgeneric is optional in CLOS is an example for such a doubtful
support, in our view.

1.2.5. Efficiency

MOP-based systems are intended for large and serious software projects;
the extensive freedom of a MOP cannot (and should not) be perceived
by small applications. Using a metaobject protocol appropriately should
increase the overall efficiency of complex systems. Efficiency has the highest
priority at execution time and programs should follow the principle “don’t
use, don’t lose”. Time and space are both important: As the power of our
hardware increases, so too does the ambition of software developers. We
do not agree with the dictum that “efficiency will not be a problem with
next year’s computers”.

However, since efficiency concerns are especially vulnerable to conflict
with other goals, they must be emphasized in the appropriate place. Here
we make the sweeping generalization that compile-time and load-time ef-
ficiency are less important than run-time efficiency. In order to achieve
high efficiency and extensibility, we try to put the high-cost operations
at load-time. Future research will be directed in putting more effort into
compile-time extensions.

All the above goals can be structured to reflect the two sides of a com-
puter system. A computer language is an intermediary between a human
and a machine; both have different needs which the language must try to
balance. It must provide both:



6 BRETTHAUER, KOPP, DAVIS, PLAYFORD

• Support for good software engineering practice; this reflects the aspect
human ⇒ language.

• Support for efficient programs; this reflects the other aspect, language
⇒ machine.

In the following, we show how the TEΛOΣ MOP tries to achieve both of
these goals. Note that the balance we describe is somewhat different than
that noted by Kiczales et al. [10], where the tension is between flexibility
and efficiency. Here, we broaden flexibility to include general software
engineering goals, since the metaobject protocol is a part of a programming
language.

1.3. Design Approach

By applying the following rules we hope to achieve the above goals:

• Simpler is better (instead of “worse is better” vs. “right is better”).

• Orthogonal language constructs are better.

• Development and execution requirements should be distinguished.

• A module’s compile-time and run-time dependencies should be dis-
tinguished.

• Efficiency costs should be paid at load-time rather than run-time.

• Language support is needed for a clear separation between extension
definition and extension use.

• Restrictions due to efficiency concerns should be made explicit in the
language, rather than in the documentation.

These rules influence software engineering as well as efficiency. The first
two rules warrant further explanation; they influence each other and their
violation often arises from a single cause. To determine which constructs
should be provided by a language, we must identify the problem solving
methods and paradigms used by humans. Different methods should be
supported by orthogonal constructs which can then be kept simpler.

A good computer language should have a simple efficiency model. That
is, constructs in the language should map simply onto implementations.
The TEΛOΣ slot access protocol is an example of a simple efficiency model,
whereas the CLOS protocol (and Common Lisp in general) explicitly rely



BALANCING THE EuLisp METAOBJECT PROTOCOL 7

on clever implementations for achieving efficiency. Clearly, efforts in this
direction must be continual, and we do not claim that TEΛOΣ is the last
word in this evolution. Rather, it points a direction in which further work
can be done.

TEΛOΣ could be viewed as a simplified version of CLOS and the CLOS

MOP. However, we claim that the result is more powerful and more ap-
propriate for most users based on our experience with MCS, FEEL and
Le-Lisp version 16. The proof, of course, must still be provided by the
experience of a wider range of users. The various public domain and com-
mercial versions of TEΛOΣ are starting to provide that feedback now.

2. Modular Decomposition

Many language designers believe classes and modules serve similar or iden-
tical purposes [11]. However, this belief is not universally shared [14]. The
class/object construct provides data abstraction with specialization and
generalization of structure and behavior of object classes; in contrast, the
module construct deals with scope and extent of variable bindings and im-
port/export relationships between modules supporting information hiding
and encapsulation. Classes serve primarily to model the problem domain,
while modules aid problem decomposition. Another way to look at the
distinction is to think of classes as implementation devices and modules as
interface devices.

Common Lisp does not provide support for strict import, export, and
visibility aspects. Its package system considers symbols as subjects of ex-
change. Symbols, however, are used for many binding spaces: global func-
tions, variables, classes, types, and so on. Thus, exporting a symbol for one
purpose opens the door automatically for all the others.

Languages like C++ or Eiffel overload classes by import/export and
visibility features. That makes their class concept as well as their scope
rules complex, especially when inheritance comes into play.

In EuLisp, we use the distinction between classes and modules to provide
a module system orthogonal to the object system, thus supporting better
software engineering practice as well as better efficiency.

The example in Figure 1 hints at how the distinction between compile-
time and runtime dependencies can be expressed by the programmer. Up to
now, the EuLisp committee has only specified the semantics of importing
macros as compile-time imports. However, compile-time imports can also
be applied to other meta-level features like metaobject classes and their
operations. Using this information, the compiler could more easily decide
which optimizations to apply.



8 BRETTHAUER, KOPP, DAVIS, PLAYFORD

(defmodule non-reflective-object-system

;; interface

(import (primitive-language-elements

reflective-object-kernel)

syntax (comfortable-syntax)

export (defstruct

defgeneric defmethod

generic-lambda

call-next-method next-method-p

make initialize allocate))

;; implementation

...)

(defmodule non-reflective-application

;; interface

(import (non-reflective-object-system ...)

syntax (comfortable-syntax

non-reflective-object-system-syntax)

export (start-application))

;; implementation

(defun start-application () ...) ...)

Figure 1: Two example module definitions

A module can be compiled separately, generating a library, or an entire
application can be completely compiled, including all of its imported mod-
ules, generating a stand-alone application. While many global optimiza-
tions are difficult and unsafe in Common Lisp EuLisp provides direct
support for making them straightforward and based on clear semantics.

2.1. Structuring TELOS Using Modules

The different parts of theMOP are separated into modules to gain clarity
and efficiency for applications.

We want to have a simple module of object-oriented constructs which
can be analyzed statically allowing significant optimizations by the com-
piler when used in applications. In particular, all classes, generic functions
and methods should be known at compile-time. We must keep the mass
of a complex application non-reflective in order to achieve the same per-
formance as in non-reflective languages. Furthermore, programs are more
understandable if reflective and non-reflective parts are clearly separated.



BALANCING THE EuLisp METAOBJECT PROTOCOL 9

In the above example we show, through the export list of the module
non-reflective-module, which language constructs we consider as non-
reflective. These are the defining and anonymous creation forms for classes,
generic functions, and methods, as well as the instance creation and initial-
ization functions make, initialize, and allocate.

The other modules can be divided in those allowing introspection and
those allowing specialization of special kinds of metaobjects like classes,
slot descriptions, generic functions, and methods. The introspection mod-
ules export the corresponding classes and slot readers. The specialization
modules additionally export the operations specified by the initialization
protocols. Furthermore, we provide a module exporting portable low level
allocation primitives.

3. The Metaobject Protocol

The following sections summarize the salient points of the TEΛOΣ meta-
object protocol as it reflects the design philosophy described above. We
assume the reader to be familiar with the CLOS MOP to contrast the
relevant aspects of the two protocols.

The slot access model is described in detail to illustrate the general prin-
ciple of moving as much work as possible to load-time. The higher order
capabilities of Lisp are exploited by protocols which compute functions to
be used at runtime – a kind of configurable dynamic compilation process.
By closing over all precomputable information, we can avoid a great deal
of runtime work.

The protocols controlling instantiation and inheritance are described
only briefly, highlighting mainly their simpler default behavior when com-
pared with their analogs in CLOS. Note that some differences between the
TEΛOΣ and CLOS protocols go unreported here since they are beyond the
immediate scope of this paper.

3.1. Slot Access

The slot access model adopted within TEΛOΣ departs from CLOS. Be-
fore explaining the new protocol we will first justify it by identifying the
features of the CLOS approach which put it at odds with our stated design
philosophy.

3.1.1. The CLOS Approach

From our design standpoint, the CLOS slot access protocol is not a
reasonable solution. Although it provides for straightforward extension of
the default slot access behavior, the following properties present problems:



10 BRETTHAUER, KOPP, DAVIS, PLAYFORD

Inherent inefficiency Slot access time is crucial to the performance of
object-oriented applications. Recognizing this, a simple efficiency
model (as defined above) is desirable.

The primary route to the value of a slot of a CLOS object is through
the slot-value chain. This is a dynamic protocol, a MOP proto-
col that must be honored at runtime – even, in principle, in a non-
reflective application – with all of the attendant runtime overhead3.
To achieve acceptable performance, CLOS relies on implementations
to circumvent this route whenever possible while still honoring new
methods added to the protocol functions. Typically, accessor func-
tions are optimized in some way, often via some new protocol for their
computation, leading to further problems.

Competing protocols Problems of consistency can often arise between
computed accessors and the dynamic protocols due to the instability
of the complex optimizations being employed. The existence of these
two methods of slot access also raises uncertainty as to which is used
by other areas of the MOP such as initialization.

So, although the CLOS slot access protocol provides a flexible means of
extension, the cost in terms of the complexity of efficient, consistent imple-
mentations is too great. The design goals for TEΛOΣ suggest that it should
be replaced by a protocol which, while retaining flexibility and simplicity,
maps more naturally to reasonable implementations.

3.1.2. The TELOS Approach

Rather than have a dynamic slot access protocol, TEΛOΣ provides a
standard protocol for computing readers and writers. Every slot description
contains one reader and one writer capable of extracting and updating the
corresponding slot within instances. Slot options in defclass which define
accessors merely bind the slot’s single reader or writer to the appropriate
name. Therefore, two readers for the same slot bound to different names
will always be eq.

Orthogonality of design is maintained by describing all slot accesses
as taking place through calls to these accessor functions. No analog of
slot-value is provided4.

3Every slot access requires at least one standard function call, two generic function
calls and a list or table lookup for the appropriate slot definition object (ignoring the
cost of accessing the set of slot definitions from the class object).

4Although it can be written simply in terms of accessors.



BALANCING THE EuLisp METAOBJECT PROTOCOL 11

3.1.3. The Slot Access Protocol

Accessors are computed and updated as part of the initialization of a
class. A new slot, inherited from no superclass, has a fresh reader and writer
computed for it. These functions are then stored in its slot description. The
protocol generic functions

COMPUTE-SLOT-READER class slotd slotds

COMPUTE-SLOT-WRITER class slotd slotds

are used to compute these functions. Accessor functions computed in this
way are not guaranteed to work for direct instances of a particular class un-
less they have been ensured for that class. Typically, compute-slot-reader
will return a generic function without any methods defined on it.

Inherited slots, either specialized in some way or left unchanged, take
the reader and writer from the corresponding slot description objects of
the superclasses. To combine two or more inherited slot descriptions, they
must have a common root and thus share the same accessor functions.
Note, then, that there is a one-to-one correspondence between logical slots
and their accessor pairs.

Before inheritance is complete, the accessors of the slot descriptions of
the class must all be ensured. The protocol generic functions

ENSURE-SLOT-READER class slotd slotds reader

ENSURE-SLOT-WRITER class slotd slotds writer

are called to guarantee that the accessors will work on direct instances of the
new class. Typically, ensure-slot-reader will add a method to reader
capable of reading the appropriate slot of direct instances of class. In cases
where the slot has not “moved” relative to its position within instances of
the superclasses of class, there may be no need to update the reader.

The computed accessor protocol also gives a portable way of defining lower
overhead slot accessors by making readers and writers standard functions
where appropriate:

(defmethod compute-slot-reader

((c <structure-class>) (sd <slot-description>) slotds)

(compute-primitive-reader-using-class c sd))

(defmethod ensure-slot-reader

((c <structure-class>) (sd <slot-description>) slotds reader)

reader)



12 BRETTHAUER, KOPP, DAVIS, PLAYFORD

Slots of structure classes, which always use single inheritance, never change
position in subclasses and the accessors should not check the types of their
arguments. The above methods implement this functionality for readers.
A primitive reader is returned as the slot accessor – ensure-slot-reader
need not do anything since the slot position can never change.

The standard ensuring methods use a subprotocol for computing prim-
itive accessors – standard functions capable of accessing a particular slot
in direct instances of a given class. These protocol functions are the direct
analog of the slot-value-using-class tier in CLOS and are the generic
functions most commonly used to change the behavior of slot access.

COMPUTE-PRIMITIVE-READER-USING-SLOT-DESCRIPTION slotd class slotds

COMPUTE-PRIMITIVE-WRITER-USING-SLOT-DESCRIPTION slotd class slotds

COMPUTE-PRIMITIVE-READER-USING-CLASS class slotd slotds

COMPUTE-PRIMITIVE-WRITER-USING-CLASS class slotd slotds

For example, compute-primitive-reader-using-class returns a func-
tion of one argument that when applied to a direct instance of class,
returns the value of the slot described by slotd. Its behavior on instances
of other classes, even subclasses of the specified class, is undefined.

3.1.4. Comparing Use

From the point of view of the applications programmer, there is little
practical difference between the CLOS and TEΛOΣ slot access protocols.
The functional equivalence between the two can be illustrated by a simple
example. Let’s say we want to implement a new slot description which
verifies that a slot value, when set, matches a certain predicate. In both
CLOS and TEΛOΣ, we can store the predicate in the slot description
object. The difference lies in how to specify the behavior of writing to such
a slot.

Here is the CLOS method:

(defmethod (setf slot-value-using-class)

(new-value (class standard-class)

object (slot predicate-slot-definition))

(assert (funcall (slot-definition-predicate slot) object))

(call-next-method))



BALANCING THE EuLisp METAOBJECT PROTOCOL 13

Here is the equivalent TEΛOΣ method:

(defmethod compute-primitive-writer-using-slot-description

((slot <predicate-slot-description>) (class <class>) slotds)

(let ((prev-writer (call-next-method))

(predicate (slot-description-predicate slot)))

(lambda (object new-value)

(assert (predicate object))

(prev-writer object new-value))))

We can note that the TEΛOΣ method is slightly more complicated, but
more efficient since it accesses the predicate just once compared to on ev-
ery write as in the CLOS case. In this small example, the effect of this
is minimal, but it can be quite significant in others. Also note that the
function returned by the TEΛOΣ method is called directly by the writer
generic function.

All primary methods for slot-value-using-class could be translated
mechanically into compute-primitive-reader-using-class methods.

In cases where it might be desirable to use a dynamic protocol, it is
a simple matter to specialize compute-slot-reader to return a standard
closure which honors that new protocol. Similarly, it should be possible to
implement the computed protocol as an extension to CLOS but this would
be somewhat more involved.

3.1.5. Implementation and Efficiency

Despite an increase in the number of functions over its dynamic counter-
part, implementation of the computed TEΛOΣ protocol is no more difficult
– a naive implementation need take no more than a few lines of obvious
code to implement each function in the protocol.

The clearest difference in terms of runtime efficiency is that the computed
accessor protocol reduces slot access in standard classes to a single generic
function call in even the simplest implementation. This has been done
without loss of generality or significant reduction in the ease with which
the behavior of the object system may be extended. The uniform use of
accessors also ensures that this potential improvement is propagated into
other areas such as initialization.

In addition, one expected effect of reducing the relative significance of slot
access as a performance bottle-neck is to allow implementors to concentrate
their optimization efforts on a smaller set of “hot spots”.

3.2. Method Lookup and Generic Dispatch

TEΛOΣ uses the generic function mechanism introduced by CLOS to



14 BRETTHAUER, KOPP, DAVIS, PLAYFORD

implement polymorphic behavior. However, the default generic function
mechanism of TEΛOΣ is simplified compared to CLOS; rather than intro-
ducing dubious and costly extensions in the kernel, we choose to relegate
certain functionality to extension modules, and provide enough extensibil-
ity to allow portable versions of them to be written.

For example, the default generic function dispatch in TEΛOΣ is purely
class based; eql methods are not supported. However, eql methods like
those found in CLOS can be portably implemented in an extension module
by defining a new generic function class and new methods on the method
lookup generic function.

3.3. Allocation and Initialization

In the current specification of TEΛOΣ, the instance creation protocol
is very similar to that of CLOS. However, we intend to apply the load-
time priority principle to instance creation as well. Classes will then have
associated allocator and initializer methods computed for them at class
creation time. Extensions to allocation or initialization will thus be done
by extending the allocator or initializer-generating methods rather than
some general allocating or initializing generic function, as is done in CLOS

and the current version of TEΛOΣ.

3.4. Class Definition and Inheritance

TEΛOΣ supports a standard inheritance protocol as flexible as that pro-
posed by Kiczales et al. [10] and of a slightly finer granularity, splitting the
work into a number of explicit phases.

The move towards a more load-time weighted protocol translates into
more work being done at class instantiation time. This work includes com-
puting and ensuring accessors, allocators and initializers as described above.
The generation of these functions constitutes a phase in itself.

The default inheritance methods implement single inheritance. The pro-
tocol, however, is designed so that general multiple inheritance or mixin in-
heritance [4] can be easily and portably implemented in extension modules5.

Neither class redefinition nor changing the class of an instance is sup-
ported by standard classes. It is this, in combination with the guarantee
that the behavior of standard generic functions cannot be modified for
standard classes6, which imbues programs expressed in terms of the default

5It is likely that all three kinds of inheritance will be supported by standard EuLisp

library modules.
6Due to the absence of support for method removal and non-standard method

combination.



BALANCING THE EuLisp METAOBJECT PROTOCOL 15

metaobjects with static semantics.

Class, method, and generic function redefinition as well as class change
may all be portably implemented as library extensions as has been done in
MCS. They are also desirable features of an interactive development envi-
ronment. We envisage that such development environments may transpar-
ently, by simple module substitution, allow code to be developed in terms
of a set of metaobjects supporting these facilities in place of the standard
metaobjects. If necessary, to gain speed or space efficiency, the program
may be recompiled in terms of the standard metaobject set without change.

4. An Example – Mixin Inheritance

This section sketches an extension of the TEΛOΣ MOP which implements
mixin inheritance. Since only the slot access protocol has been described
in detail in this paper, we focus on that aspect here.

4.1. Informal Specification

The goal of mixin inheritance is to provide a more expressive and flexi-
ble programming style than single inheritance while avoiding certain prob-
lems associated with general multiple inheritance. Mixin inheritance dis-
tinguishes between essential and subsidiary properties of objects when clas-
sifying them in a problem domain. We associate base classes with essential
properties and mixin classes with subsidiary properties. From the mod-
eling point of view, essential properties are substantive — such as buffers
and windows. Subsidiary properties are descriptive — such as printable,
bordered, and titled.

Mixin inheritance clarifies class hierarchies and improves application ef-
ficiency by obeying the following restrictions:

• A base class can directly specialize many mixin classes but only one
base class. A super-base-class is considered more general than the
super-mixin-classes.

• A mixin class can specialize many mixin classes but no base classes.

• There are no join nodes in the inheritance hierarchy, except the root
class <object>.

• Base classes may have direct instances, while mixin classes may not
be instantiated.



16 BRETTHAUER, KOPP, DAVIS, PLAYFORD

4.2. Implementation Outline

First, we have to define the two new metaclasses <base-class> and
<mixin-class>. These metaclasses are the classes of the new kinds of
classes we described above.

(defclass <base-class> (...) ())

(defclass <mixin-class> (...) ())

The exact superclasses are not specified here, but they must be meta-
classes, and thus subclasses of <class>.

In this paper we concentrate on the slot reader generating protocol. How-
ever, the other generic functions in the inheritance protocol, which need to
be defined for the new metaclasses, should be mentioned, too. These generic
functions include:

compatible-superclasses-p,
compatible-superclass-p,
compute-class-precedence-list,
compute-inherited-slot-descriptions,
compute-slot-descriptions, and
compute-specialized-slot-description.

The methods checking the compatibility of superclass and superclasses
control the first and second restriction in the list given earlier. The method
on compute-class-precedence-list linearizes the class hierarchy for base
and mixin classes depth first left to right. It signals an error if a join node
different from the root class <object> occurs. The method computing
inherited slot descriptions returns a list containing the effective slot de-
scription lists of all direct superclasses. The new methods for computing
slot and specialized slot descriptions have to deal with the case of multiple
inherited slot descriptions with the same name. Often, we can reuse the
system defined method via call-next-method and extend it as needed.

Now, we consider the slot accessor computation. Slots of base classes
never change position in subclasses. Slots of mixin classes, however, can
change position in subclasses. Thus, a generic function can be returned
as the reader for slots defined by mixin classes, while a simple function is
returned as the reader for slots defined by base classes.

(defmethod compute-slot-reader

((c <base-class>) (sd <slot-description>))

(compute-primitive-reader-using-class c sd))



BALANCING THE EuLisp METAOBJECT PROTOCOL 17

(defmethod compute-slot-reader

((c <mixin-class>) (sd <slot-description>))

(generic-lambda ((o c))))

The ensure-slot-reader method does not need to do anything for
mixin classes since they have no direct instances, and may rely on the
assumption that the right thing will be done when a slot defined for a
mixin class is inherited by a base class: A method applicable for the direct
instances of the base class will be added to the generic reader.

(defmethod ensure-slot-reader

((c <mixin-class>) (sd <slot-description>) reader)

reader)

(defmethod ensure-slot-reader

((c <base-class>) (sd <slot-description>) reader)

(if (generic-function-p reader) ; mixin slot reader?

(let ((r (compute-primitive-reader-using-class c sd ...)))

(add-method reader (method-lambda ((o c)) (r o))))

reader))

The slot writers are treated in an analogous way.

5. Conclusion

We have discussed the design goals and approach of the TEΛOΣ metaobject
protocol. They provide a better balance between support for good software
engineering practice and support for efficient programs than the CLOS

MOP.

We gave an overall description ofTEΛOΣ including a metaobject protocol
which provides the openness needed for extensions and achieves efficiency
by more static semantics for predefined metaobjects, modularizing their
operations. Simplicity and orthogonality support both good software en-
gineering practice as well as efficient programs. The metaobject system is
structured into modules taking into account the consequences for the com-
piler. It provides introspection operations as well as extension interfaces
for new inheritance strategies, new instance allocation methods, new slot
descriptions, new slot access primitives, new discrimination methods, class
redefinition, and so on.

With some minor variations, the major parts of the described protocol
have been implemented in Scheme, Common Lisp, Le-Lisp version 16



18 BRETTHAUER, KOPP, DAVIS, PLAYFORD

and FEEL. While the general goals and functionality are almost the same
as described by Kiczales et al. [10], the approach shows different emphases.
As a result, efficiency as well as robustness have both been improved.

6. Acknowledgments

First, we want to thank Greg Nuyens and Julian Padget, the main editors
of EuLisp, as well as all members of the EuLisp working group for the
very fruitful discussions during meetings and on the net.

We thank Wolfgang Goerigk and Ingo Mohr for their suggestions from
the APPLY compiler builders’ point of view.

We thank the CLOS designers for providing an excellent and useful
framework in which to study these issues, and for altruistically not doing
everything right the first time.

We thank Gregor Kiczales, Jim des Rivieres and Daniel G. Bobrow for
their excellent book “The Art of the Metaobject Protocol”, and for making
parts of the sources available to a wide community by ftp.

References

1. Le-Lisp version 16 Reference Manual. ILOG, SA, Gentilly (1992).

2. Bradford, R. Telos in Common Lisp. Submitted for publication (1993).

3. Bretthauer, H. and Kopp, J. The Meta-Class-System MCS. A Portable
Object System for Common Lisp. Documentation. Arbeitspapiere der
GMD 554, GMD, Sankt Augustin (July 1991).

4. Bretthauer, H., Christaller, Th., and Kopp, J. Multiple vs. Single In-
heritance in Object-oriented Programming Languages. Microprocess-
ing and Microprogramming, 28 (1989) 197–200.

5. Bretthauer, Harry, Davis, Harley, Kopp, Jürgen, and Playford, Keith.
Balancing the eulisp metaobject protocol. In Yonezawa, Akinori and
Smith, Brian C., editors, IMSA’92 Workshop on Reflection and Meta-
Level Architecture, Tokio (1992) 113–118.

6. Christaller, Th. Eine Einführung in LISP. In Christaller, Th., Hein, H.-
W., and Richter, M. M., editors, Künstliche Intelligenz. Theoretische
Grundlagen und Anwendungsfelder, Springer-Verlag, Berlin (1988) 1–
35.

7. Christaller, Th., di Primio, F., Schnepf, U., and Voß, A., editors. The
AI-Workbench BABYLON. Academic Press, London (1992).



BALANCING THE EuLisp METAOBJECT PROTOCOL 19

8. Cointe, P. The ObjVlisp Kernel: a Reflective Lisp Architecture to de-
fine a Uniform Object-Oriented System. In Maes, Pattie and Nardi,
Daniele, editors, Meta-Level Architectures and Reflection, North Hol-
land (1988) 155–176.

9. di Primio, F. Micro Common Flavors. Arbeitspapiere der GMD 295,
GMD, Sankt Augustin (February 1988).

10. Kiczales, G., des Rivieres, J., and Bobrow, D. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, Massachusetts (1991).

11. Meyer, B. Eiffel: The Language. Prentice Hall Object-Oriented Series,
Prentice Hall, New York (1992).

12. Padget, J. and Nuyens, G., editors. The EuLisp Definition, Version
1.0. In preparation.

13. Steele Jr., Guy L. Common Lisp - The Language, Second Edition.
Digital Press, Bedford, Massachusetts (1990).

14. Szyperski, C. A. Import is Not Inheritance – Why We Need Both:
Modules and Classes. In Madsen, O. Lehrmann, editor, Proc. of the
ECOOP ’92, Springer-Verlag (July 1992) 19–32.


